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ERROR BOUNDS AND ASYMPTOTIC PERFORMANCE UNDER
MISMATCH OF MULTISENSOR DETECTION SYSTEMS

D. Kazakos
Electrical Engineering Department

University of Virginia
Charlottesville, VA 22901

ABSTRACT is the "mismatched" log likelihood function of the kth sen-
sor.

We consider a binary detection problem, when the
data are obtained from m distant sensors, and modelled as Let, for j--0,1:

stationary Gaussian processes, with different spectra. We Pj(f,g,n) = Probability of erroneously deciding H, using
also assume that inaccurate versions of the true statistical (gjk and based on n measurements.
models are utilized, and we develop upper bounds to the We will utilize the Chemoff bounding technique. and
probability of error, based on the Chernoff bounding subsequently relate the bound to "large deviation theory.'
approach. Those bounds also converge to the asymptotic [81, [9], as n-.
probability of error as the number n of data points increases
to -. Conditions for sustaining, in spite of mismatch, The basic Chernoffbound is:
exponential convergence of the error probability to zero p0(f,gnn) = Prm 1  zk>TI.H]

with n are determined.

<_ Eoexp[t(m - 7 zk-T)] =

INTRODUCTION k=1

m
There has been much interest recently in the signal = [ E. exp(tm- (zk-T)] (3)

detection problem for data available from multiple sensors k=1

[1I - 17]. In this paper we develop bounds to the probabil-
ity of error for binary detection from multisensor data. P1(fg,n)=Pr[m-' 7 Zk STIH,]
when inaccurate versions of the actual statistics are incor- k-

porated into the decision rule. We specifically investigate
the error probability for detection in Gaussian. stationary < E1 expt-t(m' z-)J=

processes with inaccurately known spectra. kt

SUMMARY OF RESULTS = j" E1 exp [-tn(zk-T)] (4)

Suppose that m sensors are utilized for deciding k-=-I
between two hypotheses, H1.H0. Let xk = (Xk1 ... xk,) be. pohess, H, H. Le xnfor t>0.O Ej =expectation under Hj. Note that the bound (3)
the data vector for the kth sensor, distributed according to

(x) for j=0,1 under is less that I for some t0, if and only if:the probability density function fjkx) ko jM. ne

H0, HI. correspondingly. Suppose, also, that g(x) is the m-i Ezk < T)
"inaccurate" version of fk(X'k) that is used in the decision k= 1
rule. We will assume throughout this paper that the data
from different sensors are statistically independent. This Similarly. 4) is less than I for some t O. if and only if:

assumption will be removed in a subsequent paper. m_ E1  Z > T
Because of the independence between distinct sensors, the k )
likelihood ratio test is:

Decide H1 ifm - " qk(x ) > T () Let, now:
l zkt n- ' 109 [glk(Xnk)/g0k(Xk) (7)

where:
gik(Xkn) be the mismatched log-likelihood function for the kth sen-

qk('x) - n-  log g (2) sor. and st-n->0. Straightforward calculation provides us
g0k(x ) with the following expressions:

,hu research ha, be ,upoftd by a contract m.m Rom Av Devek rmmm E0 exp(tm- 1 (Zk-T)1= f fok(X)[gik(x )/gok (I )s/m
Cemtr. ""mmi q ty Dr. V'c, m at r ummcoi. of Use Sopal Process & , ., on.
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dx' -exp(-snT/m). Then, utilizing the results of Large Deviation Theory, [8].
[9], we find:

E exp-t'(zk-T) ff 1  k(Xk)/gOk(Xk) lim n-1 log PO(f,g,n)=

dx -exp(snT/m) (9)

inf Y Gk(fOk,gk,g0k,**.SJ- sT. (22)
Eo Zk = n- f fok (Xy) log [glk(X (0) k=1

E, Zk = n-1 f flk (xn) log ( (xn)]dx (11) lim n-1 log Pt (f,g,n)=

Define the functionals: n
A ~inf G T(3

Gk [fglkgOkn,sI = s k---I

It is interesting to observe that the bounds (17), (18)
n-1 log f dx (12) become the exact asymptotic error probabilities as n---.

This is the essence of Large Deviation Theory (8], [9].
Taking logarithms of (3), (4) and using (8), (9), (12). we

find the bounds: We will now conccnurate on a major class of statisti-

m cal models for which the limits (19), (20), (21) exist. This

n-1 log PO(f,g,n) 5 Gk f k,g k,gok,n,s-sT. (13) is the class of Gaussian. stationary random processes with

k=-I zero means and different spectra. Consider three multivan-
ate Gaussian probability density functions

n- 1 log P 1(f.g,n)< T. Gklflkglk,gok,n,-s] + sT. (14) f(xn g(xn), g0(x n) with zero means and covariance

kI matrces F. CI. Co. We calculate the integral of eq (12):

We observe that if G1 denotes the derivative of Gk with G[f.g 1.gon.6]=n - I log f f(xn)[g1 (xn)/goxn ldldx "=

respect to s, then. from (10), (12), (7):

Gl[f0k,glk,g0k,n,0J =m - 1 EO Zk. (15) =-7[n-' log IFT'-sCi--C-o' I - n-1 log iF -

G/[flk,gtk,g0k,n,0l =m - 1 E Zk. (16) -0-n -1 log IC11 I +6.n -1 logIC0j1 J 24)

Hence. if (5) is satisfied, the slope of the upper bound (13)
at s=O is negative, and the bound is zero at s=0. Similarly, Taking the limit as n-+-, and using the results of [101.
if (6) is satisfied, the slope of the upper bound (14) at s=O is [ 11], we find:
negative, and the bound is zero at s=O. Also, both bounds
(13) and (14) are convex with respect to s. -2G[f.gt ,go,*-,0=(2t)- ' f (log~f- (L)+Gc i' (X.)--co3 Ik)]-

The tightened Chemoff bounds (13), (14) are: -R

nl log Po(fg,n) inf 7 Gk~fOk,g 1k,gOk,n,sI-sT. (17) -log -'()-Olog C0()+6IogC3ZX)IdX
k=1 where, f(.),ci(X),co(.) are the three spectra corresponding
M to f,glgo, and it is assumed that they are strictly positive

n- 1 log P (fg,n)--inf F" Gkc .gk,gOk,n,-sl+sT(18) for all XE[-rxlJ. Using (25) for k=l.....m. and assuming
' k=1 that for the kth sensor the true spectra are fnkIflkXj}

Suppose. now. that for the class of statistical models we under HO,H 1 , and the assumed spectra are 1gOk gjkk)I
consider, the limits: under H0,H 1, we can evaluate the rates in 22). (23).

A ,, (9 The necessary and sufficient conditions in order for
limra G gt ,ns=G[fJgi,0k,o.sl (19) PO(f.g.n) and Pi(f.g,n) to converge exponentially to zero.

are that the derivatives of (22). (23) at s--O are negative.

exist, for k=l.. j=0.I which are equivalent to (20). (21). The derivative ot G
with respect to 0 at 0=0. is:

Suppose, also that:
-2G'[f.g,*gO ,=0l=(2't) - 1 f-

lir n- ' f fOk (xc) log [gk(xk)/gOk(xk)Jdx'<T (20)
n- k-i 

- logco (X)c '() }dX. 26)
lim r ' n. f lk(xk) log [glk(X)!gok(x')]dx>T (21) The condition of negative slope at s=0 of (22) is:
n-- k;,-

log gok.(X)g1()L) dX + 2T > 0 27)
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The condition of negative slope at s--O of (23) is: CONCLUSIONS

We have obtained the rates of convergence of error

(22 )-A J X flk(k[gT(X) - g5(X)]= probabilities in multisensor detection for a binary

-,i k=1 hypothesis, and we determined the conditions of exponen-

tial convergence in the presence of mismatch. The condi-

log g~k()gi (X)}d). - 2T > 0, (28) tions are necessary and sufficient.

Conditions (27), (28) guarantee exponential convergence of

P0,P to zero. correspondingly. It can be shown that if (27) REFERENCES
is not satisfied, then P0 converges to I as n --. Similarly, [11 Tenney, R. R. and Sandell, N. R. (1981) Detection
if (28) is not satisfied. P1 converges to 1. The proof of the w d sensors.' IEEE Transactions on
latter fact is not given here, but it will appear in the AES, July 1981. pp. 501-5 10.
expanded version of the paper. -[2] Teneketzis. D. (1982) "The decentralized quickest

L.et us define the spectral distance measure: detection problem," Proceedings of the 21st IEEE

nConf. on Decision and Control.
I(f~g) = (2t) -1 J f(X)g-(X)- I- [31 Srinivasan, R (1986). "Distributed Radar Detection

Theory," IEE Proceedings, vol 133, ptF. Feb 1986.
log f() g-'())}dX (29) pp. 55 -60 .

[41 Chair, Z and Varshney, P. (1987) "Neymann-Pearson

Because of the identity x-1 log x, it is seen that Hypothesis Testing in Distributed Networks.' 1987
I(f.g)2!0 with equality if and only if f() = gtk) for almost Conf. on Decision and Control.
all X[-i.t. After some algebralc manipulations, condi- [5] Reibman. A. R. and Nolte, L. W. (1987) 'Optimal
tion (27) is expressed as: Detection and Performance of Distributed Sensor

Systems." IEEE Trans. on AES. vol 23, no 1. pp.
Y I(f0k,g Ik) - I(f0k, g0k) + 2 T > 0 (30) 24-30.

[6] Viswanathan, R. Thomopoulos, S.C.A., Tumuiun.

Similarly, condition (28) is expressed as: R., "Spatial Serial Distributed Decision Fusion.
m 1987 IEEE Conf. on Decision and Control.

l=1(f1k gk) - (fik, gok) - 2T >0 (31) [71 Reibman, A. R. and Nolte, L. W.. "Design and Per-

formance Comparison of Distributed Detecton Net-
Combining (30) and (31). we see that the necessary works." IEEE Trans. on AES, Vol 23. no 6. Nov

and sufficient condition for exponential convergence of the 1987, pp 789-797.
error rate to zero, is the satisfaction of the double inequal- [8] Chemoff, H. (1952), "A measure of asymptotic e:f'i-
itv: ciency for tests of a hypothesis based on the 'mm of

m observations," Ann. of Math. Stat. vol 23. pp. 493-
k
- I(f1. g) - I(fK, gok) T > 507, 1952.

k=I
[9] Ellis, R. S. (1984), "Large Deviations for a General

> 2-1 I(f0k, gok) - (fOk, glk). (32) Class of Random Vectors." Annals of Prob.. vol i2,
k-- Ipp 1-12, 1984.

As long as the leftmost side of (32) is larger than the [101 Kazakos, D. and Papantoni-Kazakos. P. (1980).

riehtmost side. we can always pick a threshold T between "Spectral Distance Measures Between Gaussian

those two numbers to achieve asymptotic convergence of Processes," IEEE Trans. on Aut. Control. ' ol AC-25.

the error rates to zero. For the special case of matched no 5. October 1980. pp 950-959.

statistics. we have ftk = gik, fOk = g0k, and the condition [II] Kazakos, D. (1982), "Statistical Discrimination
(32) becomes: Using Inaccurate Models," IEEE Trans. on Infor.

M m Theory, Sept 1982. vol IT-28.2 l(fl, f~k) > T > - 2- ' 1: I(f0k, flk) (33)
k;=I k=1

We note that (33) can always be satisfied for some T,
because the leftmost side is nonnegative, and the rightmost
side nonpositive. Thus. in the "matched" case. exponential
convergence hinges only upon the choice of T.

To evaluate the actual rates of convergence, we need
to use expression (25) for k=l ,....m into (22). (23) and
minimize with respect to s.
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